Analysis and improvement of the genetic discovery component of XCS

نویسندگان

  • Sergio Morales-Ortigosa
  • Albert Orriols-Puig
  • Ester Bernadó-Mansilla
چکیده

XCS is a learning classifier system that uses genetic algorithms to evolve a population of classifiers online. When applied to classification problems described by continuous attributes, XCS has demonstrated to be able to evolve classification models—represented as a set of independent interval-based rules—that are, at least, as accurate as those created by some of the most competitive machine learning techniques such as C4.5. Despite these successful results, analyses of how the different genetic operators affect the rule evolution for the interval-based rule representation are lacking. This paper focuses on this issue and conducts a systematic experimental analysis of the effect of the different genetic operators. The observations and conclusions drawn from the analysis are used as a tool for designing new operators that enable the system to extract models that are more accurate than those obtained by the original XCS scheme. More specifically, the system is provided with a new discovery component based on evolution strategies, and a new crossover operator is designed for both the original discovery component and the new one based on evolution strategies. In all these cases, the behavior of the new operators are carefully analyzed and compared with the ones provided by original XCS. The overall analysis enables us to supply important insights into the behavior of different operators and to improve the learning of interval-based rules in real-world domains on average.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS

The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...

متن کامل

The Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS

The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...

متن کامل

Can Evolution Strategies Improve Learning Guidance in XCS? Design and Comparison with Genetic Algorithms based XCS

XCS is a complex machine learning technique that combines credit apportionment techniques for rule evaluation with genetic algorithms for rule discovery to evolve a distributed set of sub-solutions online. Recent research on XCS has mainly focused on achieving a better understanding of the reinforcement component, yielding several improvements to the architecture. Nonetheless, studies on the ru...

متن کامل

To Bound Search Space and Boost Performance of Learning Classifier Systems: a Rough Set Approach

Learning classifier system is a machine learning technique which combines genetic algorithm with the power of the reinforcement learning paradigm. This rule based system has been inspired by the general principle of Darwinian evolution and cognitive learning. XCS, eXtended Classifier System, is currently considered as state-of-the-art learning classifier systems due to its effectiveness in data...

متن کامل

Robot reinforcement learning accuracy-based learning classifier systems with Fuzzy Policy Gradient descent(XCS-FPGRL)

This paper presented a novel approach XCS-FPGRL to research on robot reinforcement learning. XCS-FPGRL combines covering operator and genetic algorithm. The systems is responsible for adjusting precision and reducing search space according to some reward obtained from the environment, acts as an innovation discovery component which is responsible for discovering new better reinforcement learnin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Hybrid Intell. Syst.

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2009